貨號
產(chǎn)品規(guī)格
售價
備注
BN41112R-100ul
100ul
¥2360.00
交叉反應:Human(predicted:Pig) 推薦應用:IHC-P,IHC-F,ICC,IF,Flow-Cyt,ELISA
BN41112R-200ul
200ul
¥3490.00
交叉反應:Human(predicted:Pig) 推薦應用:IHC-P,IHC-F,ICC,IF,Flow-Cyt,ELISA
產(chǎn)品描述
英文名稱 | NFkB p105 |
中文名稱 | 細胞核因子p105/k基因結(jié)合核因子抗體 |
別 名 | NFkB p105; NFkB p105; DKFZp686C01211; DNA binding factor KBF1; DNA binding factor KBF1 EBP1; DNA binding factor KBF1 EBP1; DNA-binding factor KBF1; EBP 1; EBP-1; EBP1; KBF1; MGC54151; NF kappa B; NF kappabeta; NF kB1; NFKB 1; NFKB p105; NFKB1; NFKB1_HUMAN; Nuclear factor kappa B DNA binding subunit; Nuclear factor NF kappa B p105 subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 1; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; p84/NF-kappa-B1 p98. |
研究領域 | 腫瘤 細胞生物 染色質(zhì)和核信號 信號轉(zhuǎn)導 細胞凋亡 轉(zhuǎn)錄調(diào)節(jié)因子 表觀遺傳學 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應 | Human, (predicted: Pig, ) |
產(chǎn)品應用 | ELISA=1:5000-10000 IHC-P=1:100-500 IHC-F=1:100-500 Flow-Cyt=1μg/Test ICC=1:100-500 IF=1:100-500 (石蠟切片需做抗原修復) not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 105kDa |
細胞定位 | 細胞核 細胞漿 |
性 狀 | Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human NFkB p105:871-968/968 |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Shipped at 4℃. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. |
PubMed | PubMed |
產(chǎn)品介紹 | This gene encodes a 105 kD protein which can undergo cotranslational processing by the 26S proteasome to produce a 50 kD protein. The 105 kD protein is a Rel protein-specific transcription inhibitor and the 50 kD protein is a DNA binding subunit of the NF-kappa-B (NFKB) protein complex. NFKB is a transcription regulator that is activated by various intra- and extra-cellular stimuli such as cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or viral products. Activated NFKB translocates into the nucleus and stimulates the expression of genes involved in a wide variety of biological functions. Inappropriate activation of NFKB has been associated with a number of inflammatory diseases while persistent inhibition of NFKB leads to inappropriate immune cell development or delayed cell growth. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]. Function: NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. Subunit: Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-p50 complex. Homodimer; component of the NF-kappa-B p50-p50 complex. Component of the NF-kappa-B p105-p50 complex. Component of the NF-kappa-B p50-c-Rel complex. Component of a complex consisting of the NF-kappa-B p50-p50 homodimer and BCL3. Also interacts with MAP3K8. NF-kappa-B p50 subunit interacts with NCOA3 coactivator, which may coactivate NF-kappa-B dependent expression via its histone acetyltransferase activity. Interacts with DSIPI; this interaction prevents nuclear translocation and DNA-binding. Interacts with SPAG9 and UNC5CL. NFKB1/p105 interacts with CFLAR; the interaction inhibits p105 processing into p50. NFKB1/p105 forms a ternary complex with MAP3K8 and TNIP2. Interacts with GSK3B; the interaction prevents processing of p105 to p50. NFKB1/p50 interacts with NFKBIE. NFKB1/p50 interacts with NFKBIZ. Nuclear factor NF-kappa-B p50 subunit interacts with NFKBID. Directly interacts with MEN1. Interacts with HIF1AN. Subcellular Location: Nucleus. Cytoplasm. Note=Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Post-translational modifications: While translation occurs, the particular unfolded structure after the GRR repeat promotes the generation of p50 making it an acceptable substrate for the proteasome. This process is known as cotranslational processing. The processed form is active and the unprocessed form acts as an inhibitor (I kappa B-like), being able to form cytosolic complexes with NF-kappa B, trapping it in the cytoplasm. Complete folding of the region downstream of the GRR repeat precludes processing. Phosphorylation at 'Ser-903' and 'Ser-907' primes p105 for proteolytic processing in response to TNF-alpha stimulation. Phosphorylation at 'Ser-927' and 'Ser-932' are required for BTRC/BTRCP-mediated proteolysis. Polyubiquitination seems to allow p105 processing. S-nitrosylation of Cys-61 affects DNA binding. The covalent modification of cysteine by 15-deoxy-Delta12,14-prostaglandin-J2 is autocatalytic and reversible. It may occur as an alternative to other cysteine modifications, such as S-nitrosylation and S-palmitoylation. Similarity: Contains 7 ANK repeats. Contains 1 death domain. Contains 1 RHD (Rel-like) domain. SWISS: P19838 Gene ID: 4790 Database links: Entrez Gene: 4790 Human Entrez Gene: 18033 Mouse Omim: 164011 Human SwissProt: P19838 Human SwissProt: P25799 Mouse Unigene: 618430 Human Unigene: 256765 Mouse Unigene: 2411 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. |
| 精品国产91乱码一区二区三区 | 又粗又长又色在线播放 | 国产美女裸体无遮挡竹桃 | 小辣椒成人A级视频www | 特一级一性一交一视频 | 少妇做爰免费视频播放 | 少妇人妻—级A毛片无码 | 黑人狂躁日本少妇在线小说 | 亞洲爆乳黃色A片網站 | 日本三级视频在线观看 | www.91.xhs.小黄书成人网站 | 国产 浪潮AV性色Av水牛 | 波多野结衣乳巨码无在线观看 | 一交一性一色一伦一区二 | 亚洲无码分区精品视频 | 中文字幕av久久爽一区 | 近親相姦中出し親子白木优子 | 91无码人妻精品一区二区三区四 | 高清欧美性猛交XXXX黑人猛交 | 91精品国产一区二区三竹菊影视 | 91成人影库一级A片 寡妇熟妇高潮片AAA | 精品乱码一区内射人妻无码 | 久久一区二区精品夜夜嗨 | 黄色视频网站免费入口 | 91人妻人人澡人人爽精品萌萝社 | 免费无码黄在线观看www | 中文字幕無碼亂倫系列 | 国产无码精品在线观看 | 在线无码精品秘 人口 | 免费 无码 国产在线 | 蜜桃av人人夜夜澡人人爽 | 狠狠色7777久夜色撩人米奇 | 无码精品一区二区三区四区爱奇艺 | 亚洲小说区图片区 | 欧美日韩久久久精品A片妖精 | 寡妇高潮免费观看播放 | 奇米影视7777四色 | 女人扒开腿婬乱A片 | 白丝jk糖心视频在线 | 美女淫荡视频网站免费观看 |